WEYMOUTH TOWNSHIP MUA 2014 ANNUAL WATER QUALITY REPORT

FOR REPORTING PERIOD JANUARY 1, 2013 – DECEMBER 31, 2013

WEYMOUTH TOWNSHIP MUNICIPAL UTILITIES AUTHORITY

P. O. BOX 252 MAYS LANDING, NJ 08330 (609) 909-0487

The WTMUA's public meetings are held on the third Tuesday of each month. Meetings begin at 7:00 P.M. at the Belcoville Fire House.

WTMUA Board Members

Patricia Doerr
William Billingham
John Huber
Donna Schneider
Anthony Cekada
Frank Craig
Andrea Mariner

Chairperson
Vice-Chairman
Treasurer
Member
Member
Alternate Member

Alternate Member

Alisa Owen

Secretary

* * * * *

WEYMOUTH TOWNSHIP

P.O. Box 252
Mays Landing, NJ 08330
(609) 909-0487

2014 ANNUAL WATER QUALITY REPORT

We are pleased to present our *Annual Drinking Water Quality Report* to you covering the period from *January 1, 2013 to December 31, 2013*. The Federal Safe Drinking Water Act (SDWA) requires that utilities issue an annual Consumer Confidence Report. We designed this report to inform you about the quality of the water we deliver to you every day.

GENERAL OVERVIEW

- The Weymouth Township Municipal Utilities Authority (WTMUA) was created by Township Ordinance #243-80 on December 29, 1980. Since then, its primary commitment has been supplying Weymouth Township with quality drinking water and wastewater disposal. The Authority is pleased to report that our water meets or exceeds the standards of the Safe Drinking Water Act.
- The purpose of this annual report is to better inform you of the source of your water and how it is treated and tested. A chart is included to show that all contaminants detected in your water are within United States Environmental Protection Agency (USEPA) and New Jersey Department of Environmental Protection (NJDEP) guidelines.
- Water is supplied from Hamilton Township MUA wells. The water system is comprised of five (5) municipal wells, three (3) water storage facilities and one booster pump station. Water is drawn from the Kirkwood-Cohansey Aquifer and the Lower Kirkwood (800' Sands) Aquifer (water containing ground strata). The water service area is approximately forty (40) square miles.
- All of the water produced by the HTMUA is chlorinated (for disinfection of viruses and bacteria) and treated with zinc pyrophosphate to reduce the water's corrosiveness. At four of the wells, hydrated lime is added to adjust pH and the raw water is aerated to remove carbon dioxide, volatile organics and hydrogen sulfides. The removal of iron via pressure filtration is performed at two wells. All well facilities are monitored daily to ensure proper treatment.

INFORMATION ABOUT YOUR DRINKING WATER

- This report contains important information about your drinking water. If you do not understand it, please have someone translate it for you.
- Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

FACTS ABOUT WATER

- Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).
- The HTMUA's water supply is from groundwater wells. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from various sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and can also, come from gas stations, urban storm runoff, and septic systems.
- Radioactive substances, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Guidelines for Proper Disposal of Medications

Over the counter and prescription medications should **NOT** be disposed of down the drain or flushed down the toilet. Wastewater facilities are not designed to remove pharmaceutical compounds and they may end up in your drinking water. Properly disposing of unwanted and expired prescriptions and over the counter medications in the trash promotes protects the source water.

THE FOUR STEPS FOR PROPER DISPOSAL

- 1. Keep medicine in the original container. Mark out any personal information on the labels.
- 2. Dilute the medicine with water then mix the liquid medicine with undesirable substances like coffee grounds or dirt
- 3. Place bottles in an opaque container, secure the lid or wrap in a dark colored plastic bag.
- 4. Hide the container in the trash. Do **NOT** recycle!

HEALTH NOTES

Vulnerable Populations

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Others

Children may receive a slightly higher amount of a contaminant present in the water than adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than adults. For this reason, reproductive or developmental effects are used for calculating a drinking water standard, if these effects occur at lower levels than other health effects of concern. If there is sufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, thus making the standard more stringent to account for additional uncertainties regarding these effects. In the cases of lead and nitrate, effects on infants and children are the health endpoints upon which the standards are based.

<u>ALUMINUM:</u> Naturally occurring in the environment. Aluminum levels well in excess of recommended upper limits may develop into gastro-intestinal tract irritation.

BARIUM: Some people who drink water containing barium in excess of the MCL over many years could experience an increase in their blood pressure.

IRON: Iron occurs naturally in South Jersey ground waters. Our source water with iron levels above the recommended upper limits is treated to reduce those levels and minimize the adverse effects iron may have. The recommended upper limit for iron is based on unpleasant taste of the water and staining of laundry. Iron is an essential nutrient, but some people who drink water with iron levels well above the recommended upper limit could develop deposits of iron in a number of organs of the body.

If present, elevated levels of lead can cause serious health problems, especially for pregnant LEAD: women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The HTMUA/WTMUA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using your water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure available from is the Safe Drinking Water Hotline http://www.epa.gov/safewater/lead.

Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

- <u>MANGANESE</u>: The recommended upper limit for manganese is based on staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from levels that would be encountered in drinking water.
- **MERCURY:** Some people who drink water containing inorganic mercury well in excess of the MCL over many years could experience kidney damage.
- **NITRATE:** Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.
- **RADIONUCLIDES:** Certain minerals are radioactive and may emit a form of radiation known as Alpha Emitters and Combined Radium. Some people who drink water containing Alpha Emitters and Combined Radium in excess of the MCL over many years may have an increased risk of getting cancer.
- **SODIUM:** For healthy individuals, the sodium intake from water is not important because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be of concern to individuals on a sodium-restricted diet.
- **SULFATE:** Levels above the recommended MCL can cause diarrhea and dehydration.
- TRIHALOMETHANE & HALOACETIC ACID (DISINFECTANT BY-PRODUCTS): Some people who drink water containing Trihalomethanes and Haloacetic Acid in excess of the MCL over many years may experience problems with their liver, kidneys or central nervous systems, and may have an increased risk of getting cancer.

FOR ADDITIONAL INFORMATION

If you desire more information about your water:

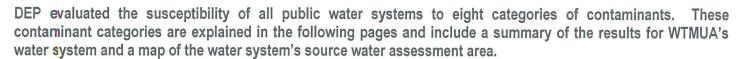
- You can contact the **HTMUA** office at (609) 625-1872
- Attend the monthly Authority meetings held on the second Wednesday of each month at 7:30 PM at the **HTMUA** office building, 6024 Ken Scull Avenue, Mays Landing, New Jersey. During these meetings, public participation is invited whereby your questions and concerns will be addressed.

Additional information can also be obtained from the USEPA Safe Drinking Water Hotline (1-800-426-4791) and from the NJDEP Bureau of Safe Drinking Water (609-292-5550).

WATER CONSERVATION & PROTECTION

- Take short showers- a 5 minute shower uses 4 to 5 gallons of water as compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use water-efficient showerheads. They are inexpensive, easy to install and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary
- Fix leaky toilets and faucets. Faucet washers are inexpensive and only take a few minutes to replace. To check you toilet for a leak, place a few drops of food coloring in the tank and wait. It is seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new more efficient model can save up to 1,000 gallons a month.
- Adjust your sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation. Refrain from directing sprinklers towards motor vehicles, lawn furniture, etc.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce the next water bill!
- The **Weymouth Township MUA** and the **Hamilton Township MUA** encourage everyone to utilize water wisely, and now with greater emphasis on security issues, to please alert us to anything that may adversely affect the supply of quality and safe water to our customers.

Weymouth Township MUA


Source Water Assessment Summary

A State Review of Potential Contamination Sources Near Your Drinking Water

The Department of Environmental Protection (DEP) has conducted an assessment of the water sources that supply each public water system in the state, including the WTMUA. The goal of this assessment was to measure each system's susceptibility to contamination, not actual (if any) contamination measured in a water supply system.

The assessment of your water system, the **Weymouth Township MUA**, involved:

- Identifying the area (known as the source water assessment area) that supplies water to your public drinking water system;
- Inventorying any significant potential sources of contamination in the area; and
- Analyzing how susceptible the drinking water source is to the potential sources of contamination.

A public water system's susceptibility rating (L for low, M for medium and H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

Factors that determine water contamination:

- How "sensitive" the water supply is to contamination. For example, a shallow well or surface water source, like a reservoir, would be more exposed to contamination from the surface or above ground than a very deep well.
- How frequently a contaminant is used or exists near the source. This is known as "intensity of use." For example, the types of activities (such as industry or agriculture) surrounding the source.

The susceptibility rating does not tell you if the water source is actually contaminated. The Consumer Confidence Report annually issued by your water utility contains important information on the results of your drinking water quality tests, as required by the federal Safe Drinking Water Act.

Where does drinking water come from?

There are two basic sources of drinking water: ground water and surface water.

Ground water is water found beneath the Earth's surface. Ground water comes from rain and snow seeping into rock and soil. Ground water is stored in underground areas called aquifers. Aquifers supply wells and springs. Wells in New Jersey range from about 15 feet to 2,000 feet deep.

Surface water is the water naturally open to the atmosphere, such as rivers, lakes, streams and reservoirs. Precipitation that does not infiltrate the ground or evaporate into the sky runs off into surface water bodies.

Ground water can seep into a stream, river or other surface water body, recharging surface water bodies. Likewise, under some circumstances, surface water can seep into an adjacent aquifer.

A water system obtains its water from 1) wells drilled into the ground that pump out ground water; 2) devices called surface water intakes placed on a river, stream or reservoir; or 3) both.

What factors may affect the quality of your drinking water source?

A variety of conditions and activities may affect the quality of your drinking water source. These include geology (rock and soil types); depth of a well or location of a surface water intake; how the land surrounding the source is used (for industry, agriculture or development); the use of pesticides and fertilizers; and the presence of contaminated sites, leaking underground storage tanks, and landfills.

What steps are being taken now to ensure my drinking water quality?

The DEP has numerous programs in place to maintain and protect the quality of our State's water resources. For example, the Safe Drinking Water Program is designed to ensure that water delivered for human consumption meets DEP's stringent health-based drinking water standards. Additionally, DEP has permitting, waste management, and clean up programs in place to avoid and control potential contamination. Key DEP drinking water protection initiatives will be phased-in over time in Source Water Assessment areas to advance existing program protections.

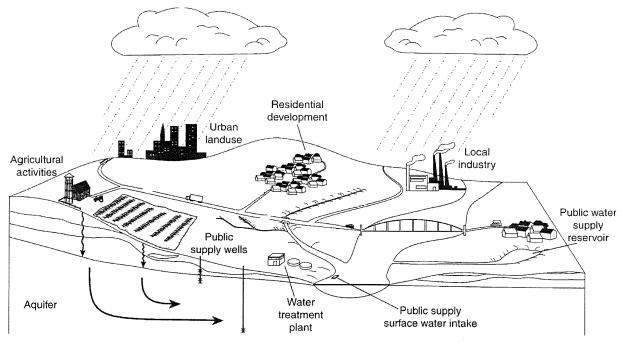


Illustration courtesy of USGS

Among the factors that may affect the quality of drinking water are the types of rock and soil and how the land is used. While some rain and snow evaporates into the sky, most of it runs off into nearby rivers and streams or seeps into the ground. Drinking water comes from underground aquifers or surface water bodies.

What can you and others do to help?

Federal law requires each state to establish and implement a Source Water Assessment Program. While government at the state and local levels can do their part, there are actions that you and your neighbors in homes and businesses can take now to help protect our precious and shared natural resource.

Here are just a few ways you and others can help ensure clean and plentiful water for New Jersey – now and in the future. Join us today for a clean water future.

In your home or business:

- Dispose of waste properly. Some materials such as motor oil, paint, flea collars, and household cleaners have the potential to contaminate source water. Contact your local Department of Public Works for proper household hazardous waste disposal.
- Limit your use of fertilizer, pesticides, and herbicides.

Here are some actions that municipal and county officials/local and county planners can take that you can help encourage and support.

- Manage and work with owners of existing potential contaminant sources to minimize potential contamination.
- Establish regulations prohibiting or restricting certain activities or land uses within the source water assessment area. Take appropriate enforcement action when necessary.
- Update municipal master plans to ensure greater protection.
- Purchase lands or create conservation easements within the source water assessment area.

Weymouth Township MUA-PWSID # 0123001

Weymouth Township MUA is a public community water system consisting of 0 well(s), 0 wells under the influence of surface water, 0 surface water intake(s), 1 purchased ground water source(s), and 0 purchased surface water source(s).

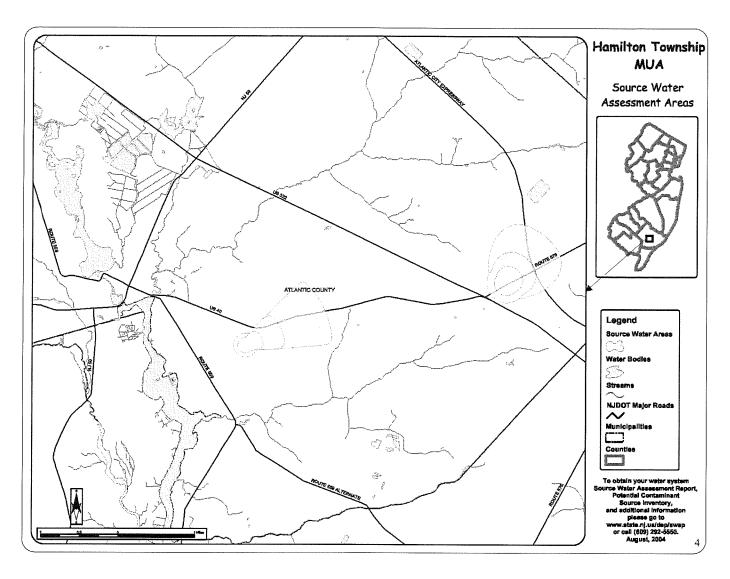
This system's source water is purchased from the following water system: HAMILTON TOWNSHIP MUA.

Susceptibility Ratings for Weymouth Township MUA Sources

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system's source water assessment report.

The seven contaminant categories are defined at the bottom of this page. DEP considered all surface water highly susceptible to pathogens; therefore all intakes received a high rating for the pathogen category. For the purpose of Source Water Assessment Program, radionuclides are more of a concern for ground water than surface water. As a result, surface water intakes' susceptibility to radionuclides was not determined and they all received a low rating.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.


	Pa	athoge	ens		lutrien	ts	P	'estici	des	(/olati)rgan mpou	ic	I	norgan	nics	Radi	onucl	ides		Radon		Вург	fection oduct ursors	
Sources	Н	M	L	Н	M	L	Н	M	L	Н	M	L	Н	М	L	Н	М	L	Н	M	L	Н	M	L
Wells - 4			5		3	2			5	3		2		2	3	2		3		2	3	3	2	
GUDI - 0																								
Surface water intakes - 0																								

- Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.
- **Nutrients:** Compounds, minerals and elements that aid growth, are both naturally occurring, and man-made. Examples include nitrogen and phosphorus.
- Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.
- **Pesticides**: Man-made chemicals used to control pests, weeds and fungi. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine and insecticides such as chlordane.
- Inorganics: Mineral-based compounds are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.
- **Radionuclides:** Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.
- **Radon:** Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to: http://www.nj.gov/dep/rpp/radon/index.htm or call (800) 648-0394.
- **Disinfection By-product Precursors**: A common source is naturally occurring organic matter in surface water. Disinfection by-products are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.

Weymouth Township MUA obtains its drinking water entirely from another public water system (**Hamilton Township MUA**); therefore, this specific information is not available. Please refer to the public water system's Source Water Assessment Report from which **Weymouth Township MUA** purchases its water.

Weymouth Township MUA

Source Water Assessment Areas

ATLANTIC COUNTY

Source Water Areas, Water Bodies, Streams, NJDOT Major Roads, Municipalities, Counties

To obtain your water system Source Water Assessment Report, Potential Contaminant Source Inventory and additional information please go to: www.state.nj.us/dep/swap or call 609-292-5550.

WTMUA WATER FACTS

- The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP Bureau of Safe Drinking Water at (609) 292-5550. A copy of the summary is included in this report.
 - The USEPA requires the monitoring of eighty (80) contaminants in drinking water. Listed are those that were detected in our water source. (The HTMUA samples for over one hundred [100] contaminants.) Sampling results in this report are from the 2013 calendar year unless indicated otherwise.
 - The WTMUA's Public Water System Identification Number (PWSID#) is 0123001.
 - The HTMUA's Public Water System Identification Number (PWSID#) is 0112001.

INORGANIC CHEMICALS

		Т	T			1		_	Т	
TYPICAL	SOURCE	Erosion of natural deposits	Corrosion of household plumbing systems			Corrosion of household plumbing systems;	erosion of natural deposits	Erosion of natural deposits	Fertilizer runoff; wastewater	Discharges; erosion of natural deposits
RANGE	From/To	0.0006 to 0.0685	<2 to 145	Six sites exceeded the	action level	<0.05		0.047 to 1.0	< 0.2 to 0.722	
LEVEL	DETECTED	0.0685	121	(90 th Percentile)		<0.05	TOTAL	1.0	0.722	THE PROPERTY OF THE PROPERTY O
	MCLG	2.0	0.0			1.3		2.0	10.0	· minimum · mini
	MCL	2.0	15.0			1.3		2.0	10.0	
	SUBSTANCE (Units)	Barium (PPM)	Lead (PPB)	*Action Level	The second secon	Copper (PPM)		Mercury (PPB)	Nitrates (PPM)	

ORGANIC CHEMICALS

SUBSTANCE (Units)	MCL	MCL MCLG	YOUR WATER	RANGE	SAMPLE YEAR	VIOLATION	TYPICAL SOURCE
Trihalomethane (PPB) 80 N/A	80	N/A	16.2 (Highest	1.47 to	2013	No	A byproduct of drinking water
and the state of t			LRAA at Site #1)	21.5			disinfection with chlorination
Haloacetic Acid	09	60 N/A	2.8 (Highest	ND to	2013	No	A byproduct of drinking water
(PPB)			LRAA at Site #2)	3.8			disinfection with chlorination

RADIONUCLIDES

	TYPICAL	SOURCE	Erosion of natural deposits	Erosion of natural deposits
	RANGE	From/To	< 3.0 to 5.56	<1.0 to 2.17
LEVEL <u>DETECTED</u>	(State Sampling	Period 2011)	5.56	2.17
		MCLG	0	0
		MCL	15.0	5.0
		SUBSTANCE (Units)	Total Alpha (pCi/L)	Combined Radium (pCi/L)

MICROBIOLOGICAL SUBSTANCES

	T		1	
SOURCE	Naturally present in the	environment	Human or animal	fecal waste
VIOLATION	No		No	
DATE	N/A		N/A	
WATER	0 Positive	Sample	0 Positive	Sample
MCGL	0		0	111111111111111111111111111111111111111
MCL	0 Positive ample	per month	0 Positive ample	per month
SUBSTANCE (Units)	Total Coliform	Bacteria	Fecal Coliform	Or E. coli Bacteria
	MCL MCGL WATER DATE VIOLATION	MCLMCGLWATERDATEVIOLATION0 Positive ample00 PositiveN/ANoNo	MCLMCGLWATERDATEVIOLATION0 Positive ample00 PositiveN/ANoper monthSampleSample	MCL MCGL WATER DATE VIOLATION 0 Positive ample 0 0 Positive N/A No I 0 Positive ample 0 0 Positive N/A No No

OTHER SUBSTANCES

The state of the s				CTONTINGOCATION		
SUBSTANCE (Units)	MCL	MCL MCLG	RUL	LEVEL	RANGE	TYPICAL
				DETECTED	From/To	SOURCE
Iron (PPM)		N/A	.3	<0.15	0.0129 to <0.15	Erosion of natural
Sodium (PPM)		N/A	50.0	17.1	3.91 to 17.1	Erosion of natural deposits; salt water intrusion
Manganese (PPM)		N/A	50.0	31.1	0.5 to 31.1	Erosion of natural deposits
Sulfate (PPB)		N/A	250	6.67	<5 to 9.97	Erosion of natural deposits
Aluminum	0.2	N/A	0.2	0.053	0.0369 to 0.053	Erosion of natural deposits
Zinc		N/A	5.0	0.107	0.0406 to 0.107	Erosion of natural deposits
Chloride (PPM)		N/A	250	40.4	2.84 to 40.4	Erosion of natural deposits and disinfection
						with chlorination

DEFINITIONS:

 $\overline{Action\ Level}$: The concentration of a contaminant which, if exceeded (90th percentile), triggers treatment or other requirements which a water system

Maximum Contaminant Level (MCL): The highest level of a contaminant allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.

Method Detection Limits (MDL): Smallest amount that can be detected by laboratory instruments.

Method Detection Limits N/A: Not available.

N.D.: None detected.

Parts Per Billion (PPB): One part in one billion parts of water. (Comparisons would be one second in 32 years, one inch in 16,000 miles or one cent in \$10,000,000).

210,000,000,000

Parts Per Million (PPM): One part in one million parts of water. (Comparisons would be one second in 12 days, one inch in 16 miles or one cent in

PicoCuries Per Liter (pCi/L): One unit of radioactivity (0.037 nuclear disintegrations per second) in one liter of water. Recommended Upper Limit (RUL): The level of a secondary contaminant considered acceptable up to this amount.

Treatment: A required process intended to reduce the level of a contaminant in drinking water (aerated).